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A B S T R A C T 

T In education research, statistical significance and effect size are 2 
sides of 1 coin; they complement each other but they do not substitute 
for each other. Good research practice requires that, to make sound 

research decisions, both sides should be considered. In a simulation 
study, the sampling variability of 2 popular effect-size measures (d and 
R2) was examined. The variability showed that what is statistically 

significant may not be practically meaningful, and what appears to be 
practically meaningful could have been the result of sampling error, 
thus not trustworthy. Some practical guidelines are suggested for 

combining the 2 sources of information in research practice. 
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Background 

In education research, statistical significance testing has received many valid criticisms in 

recent years primarily because the outcome of statistical significance testing relies too heavily on 
sample size, and the issue of practical significance is often ignored. Consequently, too much 

reliance on statistical significance testing often limits understanding and applicability of research 
findings in education practice. Effect size has been proposed as a supplement or an alternative 
to statistical significance testing; it has become increasingly popular. Some education researchers, 

however, may not be aware that, by itself, effect size can also be misleading because sample size 
influences the sampling variability of an effect-size measure. Through a Monte Car10 experiment, 
I show that statistical significance testing and effect size are two related sides that together make 

a coin; they complement each other but do not substitute for one another. Good research practice 
requires that, for making sound quantitative decisions in education research, both sides should 

be considered. To lay a foundation for the discussion in this article, I first reviewed some major 
issues related to statistical significance testing and effect-size measures. e and effect size are 2 
sides of 1 coin; they complement each other but they do not substitute for each other. Good 

research practice requires that, to make sound research decisions, both sides should be 
considered. In a simulation study, the sampling variability of 2 popular effect-size measures (d 

and R2) was examined. The variability showed that what is statistically sigd5cant may not be 
practically meaningful, and what appears to be practically meaningful could have been the result 
of sampling error, thus not trustworthy. Some practical guidelines are suggested for combining 

the 2 sources of information in research practice. Key words: effect-size measures, research 
practice, statistical significance testing n education research, statistical significance testing has I 

received many valid criticisms in recent years primarily because the outcome of statistical 
significance testing relies too heavily on sample size, and the issue of practical significance is 
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often ignored. Consequently, too much reliance on statistical significance testing often limits 
understanding and applicability of research findings in education practice. Effect size has been 

proposed as a supplement or an alternative to statistical significance testing; it has become 
increasingly popular. Some education researchers, however, may not be aware that, by itself, 

effect size can also be misleading because sample size influences the sampling variability of an 
effect-size measure. Through a Monte Car10 experiment, I show that statistical significance 
testing and effect size are two related sides that together make a coin; they complement each 

other but do not substitute for one another. Good research practice requires that, for making 
sound quantitative decisions in education research, both sides should be considered. To lay a 
foundation for the discussion in this article, I first reviewed some major issues related to statistical 

significance testing and effect-size measures.  

Literature Review 

Statistical Significance Testing 

Use of statistical significance testing in research. There have been different 
misconceptions about what significance testing is and what it is not (Shaver, 1993). For this 

article, one should have a good understanding about the basic purpose of statistical significance 
testing in quantitative research and about what information statistical significance testing provides 

for education researchers. 

  The fundamental concept underlying statistical significance testing is sampling variation. 
From a population with a known parameter (e.g., known population mean), sample statistics 

(e.g., observed means of multiple samples) will vary around the population parameter to a certain 
extent. Because of the sampling variability, the difference between an observed sample statistic 

(e.g., sample mean) and the population parameter (i.e.. population mean) does not necessarily 
indicate that the sample does not belong to the population. For example, if the mean of a random 
sample (N = 20) is observed to be 68, could this sample statistic have occurred because of 

sampling variability (i.e., by chance) if the population mean is 80? A statistical significance test 
can be conducted to evaluate the viability of the hypothesis that the sample with a mean of 68 
could have been drawn from a population with a mean of 80. That evaluation is done by assessing 

how likely the difference between the observed sample statistic and the known population 
parameter could have occurred as the result of chance, that is, random sampling variation. In 

other words, statistical significance testing answers the question: What is the probability of 
obtaining an observed sample statistic (e.g., mean of 68) when the population has a known 
parameter value (e.g., population mean of 80)? 

Assume that two treatment conditions (A and B) exist; (e.g., A represents a new 
instructional approach for teaching mathematics and B represents the conventional instructional 

approach currently in use). The researcher is interested in knowing if A is more effective than B 
in teaching mathematics (RH: research hypothesis, A is better than B). To help decide if the RH 
can be supported, the researcher set up another hypothesis (NH: null hypothesis of no difference) 

that A and B are equally effective, that is, students under A and B will learn equally well.  

Because of sampling variation, even if A is the same as B in terms of effectiveness, the 
sample under A may have higher sample mean than the sample under B. So the observation that 

students under A performed better than those under B does not necessarily mean that Method A 
is more effective than B because sampling error has not been ruled out as one possible 

explanation for the observed difference between the two samples.  
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If A and B treatments are the same (NH: of no difference), a small performance difference 
between A and B samples is more likely to occur by chance than is a large performance difference. 

When the difference between the two samples becomes sufficiently large relative to the random 
sampling variation, however, one begins to doubt that A and B are equally effective. In that case, 

it should be highly unlikely to observe the large performance difference between the two samples. 
The question becomes: How much higher should the mean of the Method A sample be than that 
of the Method B sample before one can determine with reasonable confidence that the observed 

difference is not due to sampling variability (i.e., chance)? Once one decides statistically that the 
sampling variability is no longer a viable explanation for the observed difference, the NH will be 
rejected in favor of the RH (Method A is more effective than Method B). The rejection of NH 

constitutes evidence for supporting the RH because a statistical significance test helps to eliminate 
sampling error, or chance, as a viable explanation for the observed difference between the two 

samples. 

In the statistical significance testing, I assessed the probability of obtaining the sample 
data (0) if the null hypothesis (HJ is true, that is, p(D I H,). If p(D I H,) is sufficiently small (e.g., 

smaller than .05 or .Ol), the null hypothesis will be considered not viable and will be rejected. 
The rejection of the null hypothesis indicates that the random sampling variability is the unlikely 

explanation for the observed statistical results, but it does not generally show the importance of 
obtained statistical results. Regarding the example of A and B methods in teaching mathematics, 
rejection of the null hypothesis (A and B are equally effective in teaching mathematics) simply 

means that, given the observed magnitude of difference between the two samples, it is highly 
unlikely that sampling error could have been the cause for the observed difference. As a result, 

one concludes that A and B are probably not equally effective. That conclusion, however, does 
not provide a clear indication about how much more effective Method A is than Method B in the 
practical sense. Unfortunately, the meaning of statistical significance testing as discussed here 

has sometimes been lost, and the importance of statistical significance tends to be grossly 
exaggerated in education research practice. 

Materials and Methods 

Although theoretical sampling distributions of some popular effect-size measures have 
been known (e.g., see Hedges & Olkin, 1985 ford, Glass & Hopkins, 19% for R2), I used an 

empirical approach in this article to provide more intuitive discussion about the relevant issues. I 
conducted a Monte Carlo experiment to simulate different data conditions under which both 
effect-size measures and statistical significance testing outcomes were obtained and later 

analyzed. 

 Design 

  In this article, I used the two most widely known effect size measures: d (standardized 
mean difference) and R2 (proportion of variance accounted for). The two effect-size measures 
are generally known to researchers who have been exposed to the concept of effect size. The 

literature review of several psychology journals by Kirk (1 996) indicates that R2 is by far the 
most frequently reported effect-size measure, probably because it is routinely reported in 
regression or general linear-model procedures. The meta-analysis work by Glass (1976) 

undoubtedly contributed to the popularity of d as the effect-size measure. I generated samples 
from two statistical populations with known population parameters to evaluate stan- two group 

mean difference (4; see Figure 1. I considered three factors in the Monte Carlo simulation design: 
(a) four levels of population effect size (d = .OO, .20, SO, and .80, respectively) that correspond 
to zero, small, medium, and large effects as suggested by Cohen (1988, chapter 2); (b) five levels 
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of sample-size conditions (N = 20, 40, 80, 160, 240); and (c) four conditions of group variability 
ratio (represented by the population standard deviations) between two populations (ol/ o2 = 1, 

1.5, 2, and 2.5, respectively). For the fully crossed design, the three factors yielded 80 (4 x 5 x 
4) cells. I conducted 500 replications within each cell; the total number of replications in this 

Monte Car10 experiment for evaluating d were 40,000 (500 x 80). 

                           

I used regression models to evaluate R2 (proportion of variance accounted for). I 
considered three factors in the design: (a) four levels of population effect size (R2 = .00, .02, 

.12, and .25, respectively), which approximately correspond to zero, small, medium, and large 
effects as suggested by Cohen (1988, chapter 9); (b) four levels of sample size conditions (N = 
20,40, 80, and 160, respectively); and (c) two conditions for the number of predictors (k = 2 and 

4, respectively), with the correlation among the predictors set at r = .lo. The fully crossed design 
of the three factors called for 32 cells (4 x 4 x 2). With 500 replications within each cell, the total 
number of replications for the experiment was 16,000 (32 x 500). The designs for evaluating d 

and R2 are presented graphically in Figure 1. 

 Data  

I attained data generation by using the SAS normal data generator. Multivariate normal 
data for regression models were simulated with the matrix decomposition procedure (Kaiser & 
Dickman, 1962). I accomplished all sample data generation, sample effect-size calculation, and 

statistical significance testing through the Interactive Matrix Language (PROC IML) of the SAS 
system (SAS Window Version 7.0). I did not consider data non-normality in this study. As a result, 
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the influence of data non-normality on both effect-size measures and statistical significance test 
outcomes was not assessed.  

Results and Discussion  

Figure 2 graphically describes the sampling variability of the effect-size measure of d for 

four conditions of population effects: zero, small, medium, and large (population d = .00, .20, 
SO, and .80, respectively). In addition to sample size conditions, the four conditions of group 
variability ratio(o,/ 02) are also presented (ol/ o2 =1, 1.5, 2, and 2.5). In Figure 2, a high-low 

bar represents the 90% confidence interval of sample d for a condition of sample size and for a 
group variability ratio (ratio of the standard deviations of two groups), and a short horizontal line 

within a bar represents the mean of 500 sample ds. Several observations can be made from 
Figure 2. First, sample effect-size measured appears to be an unbiased1 estimate of population 
d. The lack of bias of sample d is  obvious because over repeated sampling, the mean of 

sample d is very close to the known population value specified in the Monte Car10 experiment 
(population d = .OO, .20, SO, and 30, respectively) under most data conditions. However, a larger 
discrepancy between the two population standard deviations (SD ratio) causes some minor 

degree of downward bias of sample d, and this is especially obvious under the condition of 
population d = 30.  

Second, there is considerable sampling variability of sample effect size d. For example, 
under the condition of population d = .OO (i.e., two samples drawn from the same population, 
thus no real difference between the two samples), for small-size condition such as N = 20 (nl = 

n2 = lo), the 90% confidence interval almost covers the range from -30 to +.80. In other words, 
for that sample-size condition, when two samples were drawn from the same population, and 

consequently, there was no real difference between the two groups, I could have obtained a large 
effect size (i.80) just by chance (i.e., sampling error). Even when sample size was increased to N 
= 80 (n, = n2 = 40), probably a moderate sample size for many experimental designs, I still 

could have obtained sample effect size almost as large as k.40 (moderate effect) by chance.  

Third, the extent of sampling variability is obviously influenced by sample size. With the 
increase of sample size, the sampling variability of sample d, as represented by the 90% 

confidence intervals, shows a clear trend of becoming gradually smaller under all the conditions 
of population effect size (zero, small, medium, and large). That trend indicates that, if there are 

two identical effect sizes (e.g., moderate effect of d = .40) from two different studies involving 
different sample sizes (e.g., one is based on sample size of 40 [nl = n2 = 201, and the other is 
based on N = 160 [n, = n2 = 80]), the one based on the larger sample size is more trustworthy 

because such an effect size is very unlikely to have occurred because of sampling error. That 
result indicates that the use of effect size measure should take sample size into consideration.  

The sampling variability of another major type of effect size measure is shown in Figure 
3-the measure of association strength as represented by R2. Because sample R2 is widely known 
to have upward bias, I also reported one form of bias-corrected R2 (adjusted R2 obtainable from 

SAS or SPSS regression procedure) in Figure 3. The sampling variability of the R2 and adjusted 
R2 is represented by the 90% confidence interval bar; the mean R2 based on 500 replications is 

represented by the short horizontal line within each confidence interval bar. 
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In addition to some common observations already discussed for the effect-size measured 

in Figure 2, several observations unique for sample R2 in Figure 3 can be made. First, whereas 
measured in Figure 2 has been shown to be an unbiased estimator of population d, sample R2 
has obvious upward bias, as indicated by the position of mean R2 (short horizontal line within 

each 90% confidence interval) that is consistently, and sometimes considerably, above the 
population R2 under all conditions. Bias correction, however, has worked well because the means 

of all sample adjusted R2s are very close to the population R2 value.  

Second, sample R2 from the four-predictor regression model has more upward bias than 
that from the two-predictor regression model. That finding is expected because under the same 

sample-size condition, the ratio of sample size to the number of predictors (Nlp) is smaller for the 
four-predictor model than that for the two-predictor model. As is widely known in regression 
analysis, it is the ratio, rather than sample size per se, that largely determines the stability of 

regression analysis outcomes (Stekens, 1996; Yin & Fan, in press). 

  Both sample R2 and adjusted R2 show considerable sampling variability, which decreases 

as the sample size increases. The considerable sampling variability may make obtaining a medium 
and even large effect-size measure by chance relatively easy, even when the population effect 
size is zero or very small (R2 = .02). For example, for population R2 = .02 (very small effect) and 

for the four-predictor regression model, the upper 90% confidence limit of sample R2 reaches as 
high as .46 (very large effect) for N = 20 and about .25 (large effect) for N = 40. That degree of 

sampling variability influenced by sample size (or Nlp ratio) highlights the need for effect size to 
be considered in combination with sample size; used by itself, sample effect-size measure could 
be misleading. 
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Table 1 reports the percentages of statistically significant tests under different population 
effect-size and sample-size conditions. When the population effect is zero, approximately 5% of 
tests are statistically significant (underlined entries in the table), close to the specified nominal 

Type I error rate (a level). When population effect size is not zero, Table 1 entries represent the 
power of the statistical tests in rejecting the false null hypothesis. The tests can adequately detect 

the population effect (adequate statistical power is defined to be about .80 [Stevens, 19961) only 
when the population effect is moderate to large (d = .50, 30) and the sample size is not small 
(N2 40; see boldface entries in Table 1). 

One does not want to trust something that could have occurred by chance (Type I error); 
Table 1 shows that, when there is true effect, statistical tests may cause concern of Type I1 error. 

In other words, one may conclude that there is no effect when, in fact, there is. Balancing the 
two opposite logical errors requires the researcher (a) to understand the consequences of Type 
I and I1 errors, respectively; (b) to consider effect-size measure; and (c) to make decisions 

accordingly. Practical guidelines for combining statistical significance testing and effect-size 
measure in research practice are offered in Table 2. The content of Table 2 is self-explanatory; 
therefore, no explanation or discussion is required here. 
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Conclusion 

In this article, I attempted to show that statistical significance testing and effect size are 

two related sides of the same coin; they complement each other but they do not substitute for 
each other. Good research practice requires that both sides should be taken into account to reach 
sound quantitative research decisions. The Monte Car10 experiment showed empirically that there 

is considerable variability of sample effect-size measure and that the extent of such variability is 
influenced by sample size. Because of the sampling variability of an effect-size measure, what 

appears to be practically meaningful effect size may be the result of sampling error, and, 
consequently, is not trust-worthy. Statistical significance testing and effect-size measure serve 
different purposes; the sole reliance on either may be misleading. Some practical guidelines (see 

Table 2) are suggested for combining statistical significance testing and effect-size measure to 
make decisions in research practice 
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